3.1.27 \(\int \frac {a+b \tanh ^{-1}(c x^2)}{(d+e x)^2} \, dx\) [27]

Optimal. Leaf size=166 \[ \frac {b \sqrt {c} \text {ArcTan}\left (\sqrt {c} x\right )}{c d^2+e^2}-\frac {b \sqrt {c} \tanh ^{-1}\left (\sqrt {c} x\right )}{c d^2-e^2}-\frac {a+b \tanh ^{-1}\left (c x^2\right )}{e (d+e x)}+\frac {2 b c d e \log (d+e x)}{c^2 d^4-e^4}-\frac {b c d \log \left (1-c x^2\right )}{2 e \left (c d^2-e^2\right )}+\frac {b c d \log \left (1+c x^2\right )}{2 e \left (c d^2+e^2\right )} \]

[Out]

(-a-b*arctanh(c*x^2))/e/(e*x+d)+2*b*c*d*e*ln(e*x+d)/(c^2*d^4-e^4)-1/2*b*c*d*ln(-c*x^2+1)/e/(c*d^2-e^2)+1/2*b*c
*d*ln(c*x^2+1)/e/(c*d^2+e^2)+b*arctan(x*c^(1/2))*c^(1/2)/(c*d^2+e^2)-b*arctanh(x*c^(1/2))*c^(1/2)/(c*d^2-e^2)

________________________________________________________________________________________

Rubi [A]
time = 0.20, antiderivative size = 166, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {6071, 6857, 649, 213, 266, 209} \begin {gather*} -\frac {a+b \tanh ^{-1}\left (c x^2\right )}{e (d+e x)}+\frac {b \sqrt {c} \text {ArcTan}\left (\sqrt {c} x\right )}{c d^2+e^2}+\frac {2 b c d e \log (d+e x)}{c^2 d^4-e^4}-\frac {b c d \log \left (1-c x^2\right )}{2 e \left (c d^2-e^2\right )}+\frac {b c d \log \left (c x^2+1\right )}{2 e \left (c d^2+e^2\right )}-\frac {b \sqrt {c} \tanh ^{-1}\left (\sqrt {c} x\right )}{c d^2-e^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcTanh[c*x^2])/(d + e*x)^2,x]

[Out]

(b*Sqrt[c]*ArcTan[Sqrt[c]*x])/(c*d^2 + e^2) - (b*Sqrt[c]*ArcTanh[Sqrt[c]*x])/(c*d^2 - e^2) - (a + b*ArcTanh[c*
x^2])/(e*(d + e*x)) + (2*b*c*d*e*Log[d + e*x])/(c^2*d^4 - e^4) - (b*c*d*Log[1 - c*x^2])/(2*e*(c*d^2 - e^2)) +
(b*c*d*Log[1 + c*x^2])/(2*e*(c*d^2 + e^2))

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 266

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 649

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[d, Int[1/(a + c*x^2), x], x] + Dist[e, Int[x/
(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}, x] &&  !NiceSqrtQ[(-a)*c]

Rule 6071

Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_)]*(b_.))*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(
(a + b*ArcTanh[c*x^n])/(e*(m + 1))), x] - Dist[b*c*(n/(e*(m + 1))), Int[x^(n - 1)*((d + e*x)^(m + 1)/(1 - c^2*
x^(2*n))), x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1]

Rule 6857

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {a+b \tanh ^{-1}\left (c x^2\right )}{(d+e x)^2} \, dx &=-\frac {a+b \tanh ^{-1}\left (c x^2\right )}{e (d+e x)}+\frac {b \int \frac {2 c x}{(d+e x) \left (1-c^2 x^4\right )} \, dx}{e}\\ &=-\frac {a+b \tanh ^{-1}\left (c x^2\right )}{e (d+e x)}+\frac {(2 b c) \int \frac {x}{(d+e x) \left (1-c^2 x^4\right )} \, dx}{e}\\ &=-\frac {a+b \tanh ^{-1}\left (c x^2\right )}{e (d+e x)}+\frac {(2 b c) \int \left (-\frac {d e^3}{\left (-c^2 d^4+e^4\right ) (d+e x)}+\frac {e-c d x}{2 \left (c d^2-e^2\right ) \left (-1+c x^2\right )}+\frac {e+c d x}{2 \left (c d^2+e^2\right ) \left (1+c x^2\right )}\right ) \, dx}{e}\\ &=-\frac {a+b \tanh ^{-1}\left (c x^2\right )}{e (d+e x)}+\frac {2 b c d e \log (d+e x)}{c^2 d^4-e^4}+\frac {(b c) \int \frac {e-c d x}{-1+c x^2} \, dx}{e \left (c d^2-e^2\right )}+\frac {(b c) \int \frac {e+c d x}{1+c x^2} \, dx}{e \left (c d^2+e^2\right )}\\ &=-\frac {a+b \tanh ^{-1}\left (c x^2\right )}{e (d+e x)}+\frac {2 b c d e \log (d+e x)}{c^2 d^4-e^4}+\frac {(b c) \int \frac {1}{-1+c x^2} \, dx}{c d^2-e^2}-\frac {\left (b c^2 d\right ) \int \frac {x}{-1+c x^2} \, dx}{e \left (c d^2-e^2\right )}+\frac {(b c) \int \frac {1}{1+c x^2} \, dx}{c d^2+e^2}+\frac {\left (b c^2 d\right ) \int \frac {x}{1+c x^2} \, dx}{e \left (c d^2+e^2\right )}\\ &=\frac {b \sqrt {c} \tan ^{-1}\left (\sqrt {c} x\right )}{c d^2+e^2}-\frac {b \sqrt {c} \tanh ^{-1}\left (\sqrt {c} x\right )}{c d^2-e^2}-\frac {a+b \tanh ^{-1}\left (c x^2\right )}{e (d+e x)}+\frac {2 b c d e \log (d+e x)}{c^2 d^4-e^4}-\frac {b c d \log \left (1-c x^2\right )}{2 e \left (c d^2-e^2\right )}+\frac {b c d \log \left (1+c x^2\right )}{2 e \left (c d^2+e^2\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.24, size = 261, normalized size = 1.57 \begin {gather*} \frac {1}{2} \left (-\frac {2 a}{e (d+e x)}+\frac {2 b \sqrt {c} \text {ArcTan}\left (\sqrt {c} x\right )}{c d^2+e^2}-\frac {2 b \tanh ^{-1}\left (c x^2\right )}{e (d+e x)}+\frac {b \sqrt {c} \left (c^{3/2} d^3-c d^2 e-e^3\right ) \log \left (1-\sqrt {c} x\right )}{-c^2 d^4 e+e^5}+\frac {b \sqrt {c} \left (c^{3/2} d^3+c d^2 e+e^3\right ) \log \left (1+\sqrt {c} x\right )}{-c^2 d^4 e+e^5}+\frac {4 b c d e \log (d+e x)}{c^2 d^4-e^4}+\frac {b c^2 d^3 \log \left (1+c x^2\right )}{c^2 d^4 e-e^5}-\frac {b c d e \log \left (1-c^2 x^4\right )}{c^2 d^4-e^4}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcTanh[c*x^2])/(d + e*x)^2,x]

[Out]

((-2*a)/(e*(d + e*x)) + (2*b*Sqrt[c]*ArcTan[Sqrt[c]*x])/(c*d^2 + e^2) - (2*b*ArcTanh[c*x^2])/(e*(d + e*x)) + (
b*Sqrt[c]*(c^(3/2)*d^3 - c*d^2*e - e^3)*Log[1 - Sqrt[c]*x])/(-(c^2*d^4*e) + e^5) + (b*Sqrt[c]*(c^(3/2)*d^3 + c
*d^2*e + e^3)*Log[1 + Sqrt[c]*x])/(-(c^2*d^4*e) + e^5) + (4*b*c*d*e*Log[d + e*x])/(c^2*d^4 - e^4) + (b*c^2*d^3
*Log[1 + c*x^2])/(c^2*d^4*e - e^5) - (b*c*d*e*Log[1 - c^2*x^4])/(c^2*d^4 - e^4))/2

________________________________________________________________________________________

Maple [A]
time = 0.33, size = 181, normalized size = 1.09

method result size
default \(-\frac {a}{\left (e x +d \right ) e}-\frac {b \arctanh \left (c \,x^{2}\right )}{\left (e x +d \right ) e}-\frac {b c d \ln \left (c \,x^{2}-1\right )}{e \left (2 c \,d^{2}-2 e^{2}\right )}-\frac {2 b \sqrt {c}\, \arctanh \left (x \sqrt {c}\right )}{2 c \,d^{2}-2 e^{2}}+\frac {b c d \ln \left (c \,x^{2}+1\right )}{e \left (2 c \,d^{2}+2 e^{2}\right )}+\frac {2 b \sqrt {c}\, \arctan \left (x \sqrt {c}\right )}{2 c \,d^{2}+2 e^{2}}+\frac {2 b e c d \ln \left (e x +d \right )}{\left (c \,d^{2}-e^{2}\right ) \left (c \,d^{2}+e^{2}\right )}\) \(181\)
risch \(\text {Expression too large to display}\) \(7669\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arctanh(c*x^2))/(e*x+d)^2,x,method=_RETURNVERBOSE)

[Out]

-a/(e*x+d)/e-b/(e*x+d)/e*arctanh(c*x^2)-b/e*c/(2*c*d^2-2*e^2)*d*ln(c*x^2-1)-2*b*c^(1/2)/(2*c*d^2-2*e^2)*arctan
h(x*c^(1/2))+b/e*c/(2*c*d^2+2*e^2)*d*ln(c*x^2+1)+2*b*c^(1/2)/(2*c*d^2+2*e^2)*arctan(x*c^(1/2))+2*b*e*c*d/(c*d^
2-e^2)/(c*d^2+e^2)*ln(e*x+d)

________________________________________________________________________________________

Maxima [A]
time = 0.46, size = 171, normalized size = 1.03 \begin {gather*} \frac {1}{2} \, {\left ({\left (\frac {4 \, d e \log \left (x e + d\right )}{c^{2} d^{4} - e^{4}} + \frac {d \log \left (c x^{2} + 1\right )}{c d^{2} e + e^{3}} - \frac {d \log \left (c x^{2} - 1\right )}{c d^{2} e - e^{3}} + \frac {2 \, \arctan \left (\sqrt {c} x\right )}{{\left (c d^{2} + e^{2}\right )} \sqrt {c}} + \frac {\log \left (\frac {c x - \sqrt {c}}{c x + \sqrt {c}}\right )}{{\left (c d^{2} - e^{2}\right )} \sqrt {c}}\right )} c - \frac {2 \, \operatorname {artanh}\left (c x^{2}\right )}{x e^{2} + d e}\right )} b - \frac {a}{x e^{2} + d e} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c*x^2))/(e*x+d)^2,x, algorithm="maxima")

[Out]

1/2*((4*d*e*log(x*e + d)/(c^2*d^4 - e^4) + d*log(c*x^2 + 1)/(c*d^2*e + e^3) - d*log(c*x^2 - 1)/(c*d^2*e - e^3)
 + 2*arctan(sqrt(c)*x)/((c*d^2 + e^2)*sqrt(c)) + log((c*x - sqrt(c))/(c*x + sqrt(c)))/((c*d^2 - e^2)*sqrt(c)))
*c - 2*arctanh(c*x^2)/(x*e^2 + d*e))*b - a/(x*e^2 + d*e)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 885 vs. \(2 (149) = 298\).
time = 2.57, size = 1762, normalized size = 10.61 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c*x^2))/(e*x+d)^2,x, algorithm="fricas")

[Out]

[-1/2*(2*a*c^2*d^4 - 2*a*cosh(1)^4 - 8*a*cosh(1)^3*sinh(1) - 12*a*cosh(1)^2*sinh(1)^2 - 8*a*cosh(1)*sinh(1)^3
- 2*a*sinh(1)^4 - 2*(b*c*d^2*x*cosh(1)^2 + b*c*d^3*cosh(1) - b*x*cosh(1)^4 - b*x*sinh(1)^4 - b*d*cosh(1)^3 - (
4*b*x*cosh(1) + b*d)*sinh(1)^3 + (b*c*d^2*x - 6*b*x*cosh(1)^2 - 3*b*d*cosh(1))*sinh(1)^2 + (2*b*c*d^2*x*cosh(1
) + b*c*d^3 - 4*b*x*cosh(1)^3 - 3*b*d*cosh(1)^2)*sinh(1))*sqrt(c)*arctan(sqrt(c)*x) + (b*c*d^2*x*cosh(1)^2 + b
*c*d^3*cosh(1) + b*x*cosh(1)^4 + b*x*sinh(1)^4 + b*d*cosh(1)^3 + (4*b*x*cosh(1) + b*d)*sinh(1)^3 + (b*c*d^2*x
+ 6*b*x*cosh(1)^2 + 3*b*d*cosh(1))*sinh(1)^2 + (2*b*c*d^2*x*cosh(1) + b*c*d^3 + 4*b*x*cosh(1)^3 + 3*b*d*cosh(1
)^2)*sinh(1))*sqrt(c)*log((c*x^2 + 2*sqrt(c)*x + 1)/(c*x^2 - 1)) - (b*c^2*d^3*x*cosh(1) + b*c^2*d^4 - b*c*d*x*
cosh(1)^3 - b*c*d*x*sinh(1)^3 - b*c*d^2*cosh(1)^2 - (3*b*c*d*x*cosh(1) + b*c*d^2)*sinh(1)^2 + (b*c^2*d^3*x - 3
*b*c*d*x*cosh(1)^2 - 2*b*c*d^2*cosh(1))*sinh(1))*log(c*x^2 + 1) + (b*c^2*d^3*x*cosh(1) + b*c^2*d^4 + b*c*d*x*c
osh(1)^3 + b*c*d*x*sinh(1)^3 + b*c*d^2*cosh(1)^2 + (3*b*c*d*x*cosh(1) + b*c*d^2)*sinh(1)^2 + (b*c^2*d^3*x + 3*
b*c*d*x*cosh(1)^2 + 2*b*c*d^2*cosh(1))*sinh(1))*log(c*x^2 - 1) - 4*(b*c*d*x*cosh(1)^3 + b*c*d*x*sinh(1)^3 + b*
c*d^2*cosh(1)^2 + (3*b*c*d*x*cosh(1) + b*c*d^2)*sinh(1)^2 + (3*b*c*d*x*cosh(1)^2 + 2*b*c*d^2*cosh(1))*sinh(1))
*log(x*cosh(1) + x*sinh(1) + d) + (b*c^2*d^4 - b*cosh(1)^4 - 4*b*cosh(1)^3*sinh(1) - 6*b*cosh(1)^2*sinh(1)^2 -
 4*b*cosh(1)*sinh(1)^3 - b*sinh(1)^4)*log(-(c*x^2 + 1)/(c*x^2 - 1)))/(c^2*d^4*x*cosh(1)^2 + c^2*d^5*cosh(1) -
x*cosh(1)^6 - x*sinh(1)^6 - d*cosh(1)^5 - (6*x*cosh(1) + d)*sinh(1)^5 - 5*(3*x*cosh(1)^2 + d*cosh(1))*sinh(1)^
4 - 10*(2*x*cosh(1)^3 + d*cosh(1)^2)*sinh(1)^3 + (c^2*d^4*x - 15*x*cosh(1)^4 - 10*d*cosh(1)^3)*sinh(1)^2 + (2*
c^2*d^4*x*cosh(1) + c^2*d^5 - 6*x*cosh(1)^5 - 5*d*cosh(1)^4)*sinh(1)), -1/2*(2*a*c^2*d^4 - 2*a*cosh(1)^4 - 8*a
*cosh(1)^3*sinh(1) - 12*a*cosh(1)^2*sinh(1)^2 - 8*a*cosh(1)*sinh(1)^3 - 2*a*sinh(1)^4 - 2*(b*c*d^2*x*cosh(1)^2
 + b*c*d^3*cosh(1) + b*x*cosh(1)^4 + b*x*sinh(1)^4 + b*d*cosh(1)^3 + (4*b*x*cosh(1) + b*d)*sinh(1)^3 + (b*c*d^
2*x + 6*b*x*cosh(1)^2 + 3*b*d*cosh(1))*sinh(1)^2 + (2*b*c*d^2*x*cosh(1) + b*c*d^3 + 4*b*x*cosh(1)^3 + 3*b*d*co
sh(1)^2)*sinh(1))*sqrt(-c)*arctan(sqrt(-c)*x) - (b*c*d^2*x*cosh(1)^2 + b*c*d^3*cosh(1) - b*x*cosh(1)^4 - b*x*s
inh(1)^4 - b*d*cosh(1)^3 - (4*b*x*cosh(1) + b*d)*sinh(1)^3 + (b*c*d^2*x - 6*b*x*cosh(1)^2 - 3*b*d*cosh(1))*sin
h(1)^2 + (2*b*c*d^2*x*cosh(1) + b*c*d^3 - 4*b*x*cosh(1)^3 - 3*b*d*cosh(1)^2)*sinh(1))*sqrt(-c)*log((c*x^2 + 2*
sqrt(-c)*x - 1)/(c*x^2 + 1)) - (b*c^2*d^3*x*cosh(1) + b*c^2*d^4 - b*c*d*x*cosh(1)^3 - b*c*d*x*sinh(1)^3 - b*c*
d^2*cosh(1)^2 - (3*b*c*d*x*cosh(1) + b*c*d^2)*sinh(1)^2 + (b*c^2*d^3*x - 3*b*c*d*x*cosh(1)^2 - 2*b*c*d^2*cosh(
1))*sinh(1))*log(c*x^2 + 1) + (b*c^2*d^3*x*cosh(1) + b*c^2*d^4 + b*c*d*x*cosh(1)^3 + b*c*d*x*sinh(1)^3 + b*c*d
^2*cosh(1)^2 + (3*b*c*d*x*cosh(1) + b*c*d^2)*sinh(1)^2 + (b*c^2*d^3*x + 3*b*c*d*x*cosh(1)^2 + 2*b*c*d^2*cosh(1
))*sinh(1))*log(c*x^2 - 1) - 4*(b*c*d*x*cosh(1)^3 + b*c*d*x*sinh(1)^3 + b*c*d^2*cosh(1)^2 + (3*b*c*d*x*cosh(1)
 + b*c*d^2)*sinh(1)^2 + (3*b*c*d*x*cosh(1)^2 + 2*b*c*d^2*cosh(1))*sinh(1))*log(x*cosh(1) + x*sinh(1) + d) + (b
*c^2*d^4 - b*cosh(1)^4 - 4*b*cosh(1)^3*sinh(1) - 6*b*cosh(1)^2*sinh(1)^2 - 4*b*cosh(1)*sinh(1)^3 - b*sinh(1)^4
)*log(-(c*x^2 + 1)/(c*x^2 - 1)))/(c^2*d^4*x*cosh(1)^2 + c^2*d^5*cosh(1) - x*cosh(1)^6 - x*sinh(1)^6 - d*cosh(1
)^5 - (6*x*cosh(1) + d)*sinh(1)^5 - 5*(3*x*cosh(1)^2 + d*cosh(1))*sinh(1)^4 - 10*(2*x*cosh(1)^3 + d*cosh(1)^2)
*sinh(1)^3 + (c^2*d^4*x - 15*x*cosh(1)^4 - 10*d*cosh(1)^3)*sinh(1)^2 + (2*c^2*d^4*x*cosh(1) + c^2*d^5 - 6*x*co
sh(1)^5 - 5*d*cosh(1)^4)*sinh(1))]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*atanh(c*x**2))/(e*x+d)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]
time = 0.45, size = 269, normalized size = 1.62 \begin {gather*} \frac {1}{2} \, {\left (\frac {c d \log \left (c - \frac {2 \, c d}{e x + d} + \frac {c d^{2}}{{\left (e x + d\right )}^{2}} + \frac {e^{2}}{{\left (e x + d\right )}^{2}}\right )}{c d^{2} e + e^{3}} - \frac {c d \log \left (c - \frac {2 \, c d}{e x + d} + \frac {c d^{2}}{{\left (e x + d\right )}^{2}} - \frac {e^{2}}{{\left (e x + d\right )}^{2}}\right )}{c d^{2} e - e^{3}} + \frac {2 \, c \arctan \left (\frac {c d - \frac {c d^{2}}{e x + d} + \frac {e^{2}}{e x + d}}{\sqrt {-c} e}\right )}{{\left (c d^{2} - e^{2}\right )} \sqrt {-c}} + \frac {2 \, \sqrt {c} \arctan \left (\frac {c d - \frac {c d^{2}}{e x + d} - \frac {e^{2}}{e x + d}}{\sqrt {c} e}\right )}{c d^{2} + e^{2}} - \frac {\log \left (-\frac {c x^{2} + 1}{c x^{2} - 1}\right )}{{\left (e x + d\right )} e}\right )} b - \frac {a}{{\left (e x + d\right )} e} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c*x^2))/(e*x+d)^2,x, algorithm="giac")

[Out]

1/2*(c*d*log(c - 2*c*d/(e*x + d) + c*d^2/(e*x + d)^2 + e^2/(e*x + d)^2)/(c*d^2*e + e^3) - c*d*log(c - 2*c*d/(e
*x + d) + c*d^2/(e*x + d)^2 - e^2/(e*x + d)^2)/(c*d^2*e - e^3) + 2*c*arctan((c*d - c*d^2/(e*x + d) + e^2/(e*x
+ d))/(sqrt(-c)*e))/((c*d^2 - e^2)*sqrt(-c)) + 2*sqrt(c)*arctan((c*d - c*d^2/(e*x + d) - e^2/(e*x + d))/(sqrt(
c)*e))/(c*d^2 + e^2) - log(-(c*x^2 + 1)/(c*x^2 - 1))/((e*x + d)*e))*b - a/((e*x + d)*e)

________________________________________________________________________________________

Mupad [B]
time = 2.60, size = 727, normalized size = 4.38 \begin {gather*} \frac {\ln \left (\frac {16\,b^4\,c^{10}\,x}{e}-\frac {\left (b\,\sqrt {-c}\,e+b\,c\,d\right )\,\left (8\,b^3\,c^9\,e-\frac {\left (b\,\sqrt {-c}\,e+b\,c\,d\right )\,\left (\frac {\left (b\,\sqrt {-c}\,e+b\,c\,d\right )\,\left (\frac {8\,x\,\left (4\,b\,c^{11}\,d^5\,e^2+52\,b\,c^9\,d\,e^6\right )}{e^2}-\frac {\left (b\,\sqrt {-c}\,e+b\,c\,d\right )\,\left (384\,c^8\,d\,e^6+\frac {8\,x\,\left (24\,c^{10}\,d^4\,e^5+40\,c^8\,e^9\right )}{e^2}+128\,c^{10}\,d^5\,e^2\right )}{2\,\left (c\,d^2\,e+e^3\right )}+320\,b\,c^9\,d^2\,e^3\right )}{2\,\left (c\,d^2\,e+e^3\right )}-64\,b^2\,c^{10}\,d^2\,e\,x\right )}{2\,\left (c\,d^2\,e+e^3\right )}+\frac {8\,b^3\,c^{11}\,d^3\,x}{e^2}\right )}{2\,\left (c\,d^2\,e+e^3\right )}\right )\,\left (b\,\sqrt {-c}\,e+b\,c\,d\right )}{2\,\left (c\,d^2\,e+e^3\right )}-\frac {a}{x\,e^2+d\,e}-\frac {\ln \left (\frac {\left (b\,\sqrt {-c}\,e-b\,c\,d\right )\,\left (8\,b^3\,c^9\,e-\frac {\left (b\,\sqrt {-c}\,e-b\,c\,d\right )\,\left (\frac {\left (b\,\sqrt {-c}\,e-b\,c\,d\right )\,\left (\frac {8\,x\,\left (4\,b\,c^{11}\,d^5\,e^2+52\,b\,c^9\,d\,e^6\right )}{e^2}+\frac {\left (b\,\sqrt {-c}\,e-b\,c\,d\right )\,\left (384\,c^8\,d\,e^6+\frac {8\,x\,\left (24\,c^{10}\,d^4\,e^5+40\,c^8\,e^9\right )}{e^2}+128\,c^{10}\,d^5\,e^2\right )}{2\,\left (c\,d^2\,e+e^3\right )}+320\,b\,c^9\,d^2\,e^3\right )}{2\,\left (c\,d^2\,e+e^3\right )}+64\,b^2\,c^{10}\,d^2\,e\,x\right )}{2\,\left (c\,d^2\,e+e^3\right )}+\frac {8\,b^3\,c^{11}\,d^3\,x}{e^2}\right )}{2\,\left (c\,d^2\,e+e^3\right )}+\frac {16\,b^4\,c^{10}\,x}{e}\right )\,\left (b\,\sqrt {-c}\,e-b\,c\,d\right )}{2\,\left (c\,d^2\,e+e^3\right )}-\frac {b\,\ln \left (c\,x^2+1\right )}{2\,e\,\left (d+e\,x\right )}-\frac {b\,\sqrt {c}\,\ln \left (\sqrt {c}\,x-1\right )}{2\,\left (e^2+\sqrt {c}\,d\,e\right )}+\frac {b\,\sqrt {c}\,\ln \left (\sqrt {c}\,x+1\right )}{2\,\left (e^2-\sqrt {c}\,d\,e\right )}+\frac {b\,\ln \left (1-c\,x^2\right )}{e\,\left (2\,d+2\,e\,x\right )}-\frac {2\,b\,c\,d\,e\,\ln \left (d+e\,x\right )}{e^4-c^2\,d^4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*atanh(c*x^2))/(d + e*x)^2,x)

[Out]

(log((16*b^4*c^10*x)/e - ((b*(-c)^(1/2)*e + b*c*d)*(8*b^3*c^9*e - ((b*(-c)^(1/2)*e + b*c*d)*(((b*(-c)^(1/2)*e
+ b*c*d)*((8*x*(4*b*c^11*d^5*e^2 + 52*b*c^9*d*e^6))/e^2 - ((b*(-c)^(1/2)*e + b*c*d)*(384*c^8*d*e^6 + (8*x*(40*
c^8*e^9 + 24*c^10*d^4*e^5))/e^2 + 128*c^10*d^5*e^2))/(2*(e^3 + c*d^2*e)) + 320*b*c^9*d^2*e^3))/(2*(e^3 + c*d^2
*e)) - 64*b^2*c^10*d^2*e*x))/(2*(e^3 + c*d^2*e)) + (8*b^3*c^11*d^3*x)/e^2))/(2*(e^3 + c*d^2*e)))*(b*(-c)^(1/2)
*e + b*c*d))/(2*(e^3 + c*d^2*e)) - a/(d*e + e^2*x) - (log(((b*(-c)^(1/2)*e - b*c*d)*(8*b^3*c^9*e - ((b*(-c)^(1
/2)*e - b*c*d)*(((b*(-c)^(1/2)*e - b*c*d)*((8*x*(4*b*c^11*d^5*e^2 + 52*b*c^9*d*e^6))/e^2 + ((b*(-c)^(1/2)*e -
b*c*d)*(384*c^8*d*e^6 + (8*x*(40*c^8*e^9 + 24*c^10*d^4*e^5))/e^2 + 128*c^10*d^5*e^2))/(2*(e^3 + c*d^2*e)) + 32
0*b*c^9*d^2*e^3))/(2*(e^3 + c*d^2*e)) + 64*b^2*c^10*d^2*e*x))/(2*(e^3 + c*d^2*e)) + (8*b^3*c^11*d^3*x)/e^2))/(
2*(e^3 + c*d^2*e)) + (16*b^4*c^10*x)/e)*(b*(-c)^(1/2)*e - b*c*d))/(2*(e^3 + c*d^2*e)) - (b*log(c*x^2 + 1))/(2*
e*(d + e*x)) - (b*c^(1/2)*log(c^(1/2)*x - 1))/(2*(e^2 + c^(1/2)*d*e)) + (b*c^(1/2)*log(c^(1/2)*x + 1))/(2*(e^2
 - c^(1/2)*d*e)) + (b*log(1 - c*x^2))/(e*(2*d + 2*e*x)) - (2*b*c*d*e*log(d + e*x))/(e^4 - c^2*d^4)

________________________________________________________________________________________